Computing Phylogenetic Roots with Bounded Degrees and Errors
نویسندگان
چکیده
Given a set of species and their similarity data, an important problem in evolutionary biology is how to reconstruct a phylogeny (also called evolutionary tree) so that species are close in the phylogeny if and only if they have high similarity. Assume that the similarity data are represented as a graph G = (V,E) where each vertex represents a species and two vertices are adjacent if they represent species of high similarity. The phylogeny reconstruction problem can then be abstracted as the problem of finding a (phylogenetic) tree T from the given graph G such that (1) T has no degree-2 internal nodes, (2) the external nodes (i.e. leaves) of T are exactly the elements of V , and (3) (u, v) ∈ E if and only if dT (u, v) ≤ k for some fixed threshold k, where dT (u, v) denotes the distance between u and v in tree T . This is called the Phylogenetic kth Root Problem (PRk), and such a tree T , if exists, is called a phylogenetic kth root of graph G. The computational complexity of PRk is open, except for k ≤ 4. In this paper, we investigate PRk under a natural restriction that the maximum degree of the phylogenetic root is bounded from above by a constant. Our main contribution is a linear-time algorithm that determines if G has such a phylogenetic kth root, and if so, demonstrates one. On the other hand, as in practice the collected similarity data are usually not perfect and may contain errors, we propose to study a generalized version of PRk where the output phylogeny is only required to be an approximate root of the input graph. We show that this and other related problems are computationally intractable.
منابع مشابه
Computing Bounded-Degree Phylogenetic Roots of Disconnected Graphs
The Phylogenetic kth Root Problem (PRk) is the problem of finding a (phylogenetic) tree T from a given graph G = (V,E) such that (1) T has no degree-2 internal nodes, (2) the external nodes (i.e. leaves) of T are exactly the elements of V , and (3) (u, v) ∈ E if and only if the distance between u and v in tree T is at most k, where k is some fixed threshold k. Such a tree T , if exists, is call...
متن کاملAn approach to fault detection and correction in design of systems using of Turbo codes
We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...
متن کاملConvergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).
متن کاملComputation of the q-th roots of circulant matrices
In this paper, we investigate the reduced form of circulant matrices and we show that the problem of computing the q-th roots of a nonsingular circulant matrix A can be reduced to that of computing the q-th roots of two half size matrices B - C and B + C.
متن کامل